The Chordal Graph Polytope for Learning Decomposable Models

نویسندگان

  • Milan Studený
  • James Cussens
چکیده

This theoretical paper is inspired by an integer linear programming (ILP) approach to learning the structure of decomposable models. We intend to represent decomposable models by special zeroone vectors, named characteristic imsets. Our approach leads to the study of a special polytope, defined as the convex hull of all characteristic imsets for chordal graphs, named the chordal graph polytope. We introduce a class of clutter inequalities and show that all of them are valid for (the vectors in) the polytope. In fact, these inequalities are even facet-defining for the polytope and we dare to conjecture that they lead to a complete polyhedral description of the polytope. Finally, we propose an LP method to solve the separation problem with these inequalities for use in a cutting plane approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhedral aspects of score equivalence in Bayesian network structure learning

The motivation for this paper is the integer linear programming approach to learning the structure of a decomposable graphical model. We have chosen to represent decomposable models by means of special zero-one vectors, named characteristic imsets. Our approach leads to the study of a special polytope, defined as the convex hull of all characteristic imsets for chordal graphs, named the chordal...

متن کامل

Complement of Special Chordal Graphs and Vertex Decomposability

In this paper, we introduce a subclass of chordal graphs which contains $d$-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay.

متن کامل

Algorithms for Learning Decomposable Models and Chordal Graphs

Decomposable dependency models and their graphical counterparts, i.e., chordal graphs, possess a number of interesting and useful properties. On the basis of two character­ izations of decomposable models in terms of independence relationships, we develop an exact algorithm for recovering the chordal graphical representation of any given decom­ posable model. We also propose an algorithm for le...

متن کامل

Vertex Decomposable Simplicial Complexes Associated to Path Graphs

Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...

متن کامل

Minimum Fill-in and Treewidth for Graphs Modularly Decomposable into Chordal Graphs

We show that a minimum ll-in ordering of a graph can be determined in linear time if it can be modularly decomposed into chordal graphs. This generalizes results of 2]. We show that the treewidth of these graphs can be determined in O((n + m) log n) time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016